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Abstract

A review is given of the mathematical models of lake Baikal existing today. Special attention is given to the
models that take into account the influence of toxicants on the ecosystem componcnts.

A model of ecosystem disturbances is described that may be used to forecast the ecosystem behaviour during
varjous management conditions in thc lakc region. It is based on experimental data and the method of its
informational provision is given. Model experiments showed that thc lake ecosystem is more sensitive to chronic
input of toxicants in low concentrations than to fluxes of their input resulting in a concentration of up to 1 mg 17"
During ice-cover period the planktonic community is shown to be less resistant to disturbances than in summer.
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1. Introduction

Studies of a complicated natural object usually
bring to life an appreciable amount of models
(Jgrgensen, 1983). Their purpose is to explain the
object behaviour, to forecast its changes with
time. In this respect lake Baikal is not an excep-
tion. We shall not touch the models describing
the dynamics of water, temperature conditions,
individual ecosystem components, as well as sta-
tistical series, but consider such models of the
lake ecosystem that could be employed to fore-
cast its condition under the action of anthro-
pogenic factors, as it is important to establish,

" Corresponding author.

even approximately, the self-purification poten-
tial of the lake for its managing (Uhlmann, 1982).
The most realistic way to obtain such kind of
forecast data in modern ecology is mathematical
modelling (Straskraba and Gnauck, 1985).

2. Lake characteristics

Some general information on the lake is given
in Table 1.

Life in the lake reaches its maximum depths,
connected specifically with high oxygen content
across the whole water depth. Photosynthesis
takes place in the upper 50-m water layer, the
richest in life. Beginning with 250 m depth the
abiotic conditions in the lake are constant at any
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Table 1
Morphometrical characteristics of Lake Baikal
Volume 23600 km?
Area of surface 31502 km?
Depth
average 730 m
maximum 1637 m
Elevation 455.6 m
Geographic coordinates
Longitude 103°47'E-109° 54'E
Altitude 51°20'N-55°52'N

season; there is no light and temperature is con-
stant, 3.3-3.4°C.

Fauna and flora of the lake are marked by
pronounced endemism (Kozhov, 1963; Galazy,
1978). Two peaks in the phytoplankton develop-
ment are observed during the year. In spring
diatomic plankton develops in abundance under
the ice, at the end of summer blue-green and
green algae. Periods of maximum quantities of
zooplankton, as well as the highest development
of the bacterial plankton follow the vegetation
peaks. Zooplankton contains many species of Ro-
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tifera, rather abundant are Cyclops kolensis,
predatory pelagic Amphipoda Macrohectopus
grewingki, but the main component of the zoo-
plankton is the endemic Copepoda Epishura
baicalensis (Kozhova, 1987).

The ichtyofauna of the lake is mainly repre-
sented by the sculpins and family of Comephorus,
the endemics of Baikal. Pelagic sculpins (2
species), as well as Comephorus, feed on zoo-
plankton and fish fry, being, in turn, the main
food for Coregonus migratorius (omul) and seal
(Fig. 1). In the lake there are also numerous
benthos-feeding fishes, mostly species of sculpins,
sigs, graylings and sturgeon.

3. Existing models
3.1. Models of “‘clean” lake

Model of seasonal dynamics

We begin our review of the lake ecosystem
mathematical models with a model of seasonal
dynamics of the lake Baikal pelagic community as
developed by Aschepkova et al. (1978b).

The model consists of a number of sub-mod-

els: “Plankton community”, ‘“Macrohectopus”,
‘“Cottocomephorus grewingki’”’, “Cot-
tocomephorus inermis”, “Omul”, “Seal”, “Be-

nthos” (Fig. 2). A range of changes of each com-
ponent is used in the model from 0 to + 1, where
0 corresponds to “few, disappearing” and +1 to
“unusually large”. To the term ‘“mean” accord-
ingly applies magnitude 0.5. Mutual influences
are reflected by a scale where “absence of influ-
ence” corresponds to the point 0, “the strongest
negative influence” to —1, and ‘“the strongest
positive influence” to + 1.

The seasonal dynamics are reflected in a sub-
model “Plankton community”. A year is divided
into 6 periods. These are February—April, May—
June, July-August, August—September, Octo-
ber—November and December-January., In the
course of each season action is noted of abiotic
factors of definite intensity, such as solar radia-
tion, wind, ice and snow thickness and others that
cause changes in warming of the water top layer,
its agitation, evaporation, turbulence in the
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Fig. 2. Scheme of lake Baikal ecosystem model by Aschepkova
et al, 1978b. 1, pelagic community; 2, Macrohectopus; 3,
golomyanka; 4, 5 Cottocomephorus grewingki, C. inermis; 6,
benthic community; 7, omul; 8, seal. Circles represent biotic
interactions, triangles interactions regulated by economics val-
ues.

boundary layer water—air, heat-losses, dates of
the lake ice breaking up and binding. Concentra-
tions of the biogenic elements are defined by
both hydrodynamic and biotic factors.

Annual dynamics take place under the action
of the factors listed above of diatomic, Peridinium
and other algae, bacteria on which feed rotifers,
cyclops, successive stages of Epishura develop-
ment and detritus.

The other sub-models have no seasonal dy-
namics. On sub-model “Macrohectopus” act
sub-models “Plankton community” by average
annual quantities of Epishura and Cyclops (eps,
cys) serving as its food, and “Cottocomephorus
grewingki”, “Omul”, “Cottocomephorus inermis”
and “Comephorus” by average annual quantitics
of fish feeding on the crustaceans (cps, crs, cls,
cms). Average annual quantity of Macrohectopus
(ma) serves for these sub-models as a positively
acting factor for fish accretion rates and nega-
tively for plankton.

The sub-models of fish have age groups: 3
each for Cottocomephorus grevingki and Cotto-
comephorus inermis, 6 for Comephorus and 10 for
omul. Each of them depends on plankton via
(eps) and (cys), Macrohectopus via (ma), and
omul, in addition, on benthos (ben). Omul and
Cottocomephorus grewingki are objects of fishing
(ycr, yep) the catch being controlied by the mag-
nitude of the fishing effort (fcr, fcp).

Cottocomephorus grewingki, C. inermis and
Comephorus provide food for the seal (cps, cls,
cms) whose quantity affects them (nes) and is
determined by the hunting (yne) which depends
on hunting efforts (fne). Seal has 16 age groups.
Finally, benthos depends on temperature and
food conditions via plankton block on consump-
tion by omul (crs).

In the model there is a total of 120 variables, it
is possible to modify 20 input variables, 3 vari-
ables being output in the form of fishing Cotto-
comephorus grevingki and omul, hunting for seal.

The model represents a system of linear equa-
tions:

X(t)=AX(t) +BX(t— 1) + CU(1),

where U(t) = (U(1),...,U, (1)), U(t) €10,1], vec-
tor of input variables for a year, f; X(t)=
(X(1),..., X 5(t), X{t)<€][0,1], vector of phase
variables for the same year; A, matrix of influ-
ence coefficients within the year; B, matrix of
interannual relations; C, matrix of dependence of
the model variables on external conditions.
With this condition

120

20
Y (lagd +lbl) + 2 leyul=1, i=12,...,120.
j=1 k=1

At the stationary point of the system all the
coordinates are equal to 0.5.

This model makes it possible to obtain only
qualitative results, but its study permitted us to
find a series of dependencies between abiotic
factors, to discover that biotic components do not
depend on air temperature, but depend strongly
on conditions of insolation and winds, to isolate
the community elements most sensitive to solar
radiation (phytoplankton, bacteria, rotifers, Cy-
clops) and to wind activity (phytoplankton). This
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""" ORGANIC
MATTER

Fig. 3. Energy flows in model of pelagic community by As-
chepkova et al., 1978a. For explanations see text.

model is considered by the authors themselves as
an intermediate stage in the work.

Energy flow model

The next model is a energy flow model of the
pelagic community of lake Baikal by Aschepkova
et al. (1978a). This is a lumped model, i.c. the
spatial structure of the lake is not considered,
similarly to the previous model. Energy flows are
reviewed in a 0-250 m layer, all values are ex-
pressed in kJ /m”®.

The following components are included in the
model:

x,: phytoplankton, x,: Epischura, x5: Cyclops, x,:
Macrohectopus, xs: omul, x,: pelagic sculpin, x,:
Comephorus, x4 seal, x40 bacteria, x,,: detritus
(Fig. 3)

b; biomass of i component
r;;  energy flow from component i to j
g energy exchange of { component

m,  energy loss with mortality of i component

U, non-assimilated food remnants of compo-

nent i
®, tension of component / trophic relations
A;;  share of component i in the food of j
Crax  SPecific maximum ration

A annual influx of allochthonic organics
S,  organic sedimentation
S, organic drainage via Angara

Energy flows representing biomass functions
were calculated from formula proposed by Men-
shutkin (1971)

_ 1—e 4=
"ij(bi’bj) =C{naxbj/\ij —,
&,
where
j _ L —Bb
clax(b;) = ;e PP
and
i — . —Bb
Chax(b;) = ;e PP,

Average correction of Menshutkin (1971), a
fraction in the formula for r,(b,b;) was taken
equal to 0.8. Coefficients ¢;, «;, and B; were
calculated on a condition that with b, = 0 specific
maximum ration increases 2 times in comparison
with the maximum ration for average value of the
biomass. Values A;; were taken constant for each
component,

Energy exchange and losses with mortality de-
pended linearly on biomass components

gi=vb,, m;=6b;, i=1,...9,

as well as the non-assimilated rations linearly
dependent on the summary ration

L1j=pjz,~,.j, i=2,...8

Values v, and §; are taken constant for each
component, values p; are taken equal to 0.2.
The model is a system of ten differential equa-
tions
db,
ds =rop— 81 —m; — Z"u;
J

db,
FT Yri—8&-—m—U—ZLr;, i=2,..9;

dt

8
Y om+ lei_rlo,()_'—A_Sl—SZ’
i=2

i=1

where S, = xby, S, = ub,y. A value 6.7 was taken
for y and 20 for u. In the equations for omul and



E.A. Silow et al. / Ecological Modelling 82 (1995) 27-39 31

seal, flows 7, and rg, were introduced represent-
ing their catch and connected linearly with corre-
sponding biomasses by coefficients rg, = @sbs, g
= @gbs.

Experiments with the model showed that in-
crease in the inflow of allochthonic organics by
20% causes an increase in the primary produc-
tion by 6%, decrease in the organic inflow by the
same 20% results in the primary product de-
crease by 8%. But the authors themselves point
out the hypothetic nature of many model parame-
ters assigned by them and the necessity to define
them more exactly experimentally at Baikal.

Box model of ecosystem dynamics

In a box model of the lake Baikal ecosystem
dynamics by Menshutkin et al. (1981) the lake is
already studied as an extended object. The water
area is divided into 65 boxes of 484 km? each. A
photosynthetic zone is located under each box
(up to 50 m depth) and under 59 boxes also a
destructive one (50 m bottom). Total number of
boxes equals 124.

Concentrations of five components are ac-
counted for in each box: b (k,i), phytoplankton;
b,(k,i), zooplankton; b,(k,i), detritus; b,(k,i),
bacteria; bs(k,i), biogenic substances where k =
1,2, numbers of photosynthetic and destructive
zones; i = 1,2,...,65, numbers of boxes.

All concentrations are given in kJ /m>, bs(k,i)
is understood as a hypothetic biogenic substance.
The time step of the system is 1 day, the number
of state vector components is 620.

The processes of biological nature are imitated
by the same functions as the model just studied,
temperature corrections are used for a number of
them (optimum for algae growth is taken as 1.5° C,
for zooplankton feeding 10°C according to
Kozhov (1963)). If

bi(k,i) daily changes in concentrations,
P photosynthesis rate,

ch ration of / component on J,

of losses of j on metabolism,

M}  mortality of j component, then

Ab,(k,i)=P*—Ck — Qk— M¥K;
Aby(k,i) =0.9(Clh+Ch + Cly) — 0% — M&;

Aby(k,i) = O.2(C{‘2 +C% + sz)
— Ch + M} + M5,

Aby(k,i) =Ck —Ck — Qk;
Abg(k,i) =P*+ Qi + Q5 + Qi k=1.2.

In the destructive zone P?2=0, P! is defined
by the “Liebig’s limitation principle”.

Values obtained in the next half-step are con-
verted in conformity with transfer coefficients
between the boxes (currents imitation). In addi-

tion, sedimentation of detritus, bacteria and algae
is accounted for by a formula:

~Vb(1,i), k=1
~Vb,(1,i), k=2

J

k=134; i=1,...,65,

where Vj" = quantity of the component sedi-
mented in a day; V= sedimentation coefficient.

0.05
V= { 0

where ¢ is time, days.

The last entry means that phytoplankton be-
gins to sedimentate only after the melting of ice.
Bulk diffusion between vertical layers is also ac-
counted for:

wi(i)(b;(2,0) — b,(12)), k=1
Wi(koi) =\ w,(i)(b,(1,0) — b;(2,1)), k=2,
i=1,...,65,

where W(k,i) is diffusion; w,(i) is agitation coef-
ficient in box i.

Experiments with the model showed that it
reflects sufficiently well the real dynamics of the
ecosystem, permits to follow the distribution path
of a substance entering the lake, to evaluate the
influence of the ecosystem condition changes in
one location on other lake regions.

forj=34o0rj=1and > 150,
for j=1and ¢t < 150,

3.2. Model of “polluted’ lake

All the models studied above have no connec-
tion at all with the action of pollutants on the
ecosystem. But the next model includes the pol-
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luting substances. It was developed by a group of
authors from Rostov University and the Institute
of Hydrochemistry under guidance of A.B.
Gorstko (Gorstko et al., 1978).

The ecosystem state is described by a vector
X(t), each coordinate of which is a numerical
characteristic of a certain component of the
ecosystem (for hydrobionts biomass; for biogens,
pollutants etc. concentration). The model step ¢
equals 5 days. Exogenic external factors (water
temperature, wind velocity, solar radiation inten-
sity etc.) are included in the vector S(¢). The
model studies only one region of Baikal (south-
ern), whose surface is divided into 9 regions (Fig.
4) and by depth: two layers are allotted for hydro-
logical parameters, 0-200 m and 200 m-bottom;
four for phytoplankton, 0-25 m (divided in turn
into 5 layers), 25-50, 50-200, and 200-bottom.
All this leads to an increase in the vector dimen-
sions. General view of the model may be pre-
sented by an equation

X(1+1) =G(S(1))F(X(1),5(1)),

where F is the kinetic operator that converts the
system state under the action of external factors,
mutual conversions and influences; G is the lin-
ear operator for agitation.

The hydrodynamics block permits concentra-

S~z

O 20 40 km
it

Fig. 4. Division of southern Baikal water body in model of
Gorstko et al., 1978.
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Fig. 5. Division of lake Baikal water body accepted by distur-
bances model. A, layer 0-50 m; B, layer 50-250 m; C, layer
250 m-bottom.

tion calculations of the components in the cells at
the next step, knowing the concentration for the
present moment, velocity, force of wind, water
roughness and level changes, and representing
the water exchange as a successive water ex-
change between the surface cells, lifting and low-
ering of the water masses and water exchange
between upper and lower cells.

4. Ecosystem disturbances model
4.1. Description of model

The basic object of the model is optimization
of interaction of the anthropogenic factors with
the ecosystem of Lake Baikal, therefore the model
was based on the method of disturbances also
used by other authors (De Angelis et al., 1985).
The lake water surface is divided into 10 regions,
significantly differing by their conditions (Fig. 5).

In each region the water body is divided into
three layers (0-50, 50-250), the layer 250 m—bot-
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tom was supposed to be homogenous. Thus 21
boxes are obtained and ecosystem dynamics within
each box is described by an equation

dzi
d¢

N .
= Z QijZI:

j=1

1 ) ) . .
+W Z(PlkZ;_PlkZIl(+DkL(Z;_ZI’<))
lelL

+ U{,

where Z is vector of ecosystem deviation from
unperturbed state; 0 mutual influence matrix of
ecosystem components; L aggregate of the neigh-
bouring cells; P, D matrices of turbulence and
diffusion; V' vector of box volumes; U vector of
external influences.

The scheme of ecosystem components interac-
tions is given in Fig. 6. The number of the ecosys-
tem condition indices studied by the model is 18.
Coordinates of vector Z represent concentration
deviations of mineral salts, biogenic elements,
organic substance, main pollutants, quantities of
phyto- and zooplankton, phyto- and zoobenthos,
microflora, ichthyofauna and seals. Individual

components listed above are represented by sev-
eral coordinates (for example, zooplankton by
Epischura, Cyclops, Macrohectopus; ichthyofauna
by omul, Comephorus, pelagic sculpin).

Pollutants are introduced through vector U
(excess of mineralization, biogenic elements, oil
products, phenols, etc.), fishing of omul, seal
hunting, introduction of fish fry are accounted
for. To determine the elements of matrices P
and D, a separate hydrodynamic block is formu-
lated. Each element of the matrix Q—g,; reflects
the influence of component j on component i,
i.e. demonstrates changes in component i in a
unit of time during deviation of component j by a
unit. Diagonal elements g, reflect the dynamics
of returning component { to initial state during
its single deviation, i.e. this is a constant for the
population self-rehabilitation rate or a constant
for the pollutant disintegration rate, etc.

The main problem usually ecologists are faced
with (Straskraba and Gnauck, 1985; Tumeo and
Orlob, 1988) is the informational provision of
models.

4.2. Identification method

To identify unknown parameters of perturba-
tions of lake Baikal ecosystem mathematical

Potvtante  [OFgene | [wtriencs | Ve
AN i §
Phytoplankton Phytobenthos
Bacteria
/Zooplankton /oobhenthos
Fishes
t
Seal

Fig. 6. Ecosystem components interactions in disturbances model.
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model, a specific algorithm was developed and
later implemented as a software complex on an
IBM-compatible computer.

Let an object be described by the following
mathematical model

Z=f(t,z,a) (1)

where the functions z(t) € R” characterize the
state of the object; a € R” is the vector of un-
known parameters. The object is examined on
some time-segments T =[t{,ti]c T, i=T,p. On
each time-segment 7' a vector-function g'(¢,z,a)
is known, describing the mathematical model of
an operator of measurements over the object. So,
input information of the model’s identification
unit may be composed not only of the state values
of the ecosystem but of some state functions
known in advance. For example, values of state
change rates, and g’ describes these dependen-
cies. The initial states vector z'(f,) and the mea-
surements operator values vector g'(¢) are given,
as well as the mathematical model of measure-
ments operator C(¢,,z,a) for t =¢, and the vec-
tor of its values C.

The identification problem consists in seeking
parameters of the vector a such that the mathe-
matical model describe the objects behaviour in
the best way, e.g. in the sense of the functional
minimum

P " .
-y [(C’(r{,z{,a) - T y/(Ci(th,zia) - T)
i=1

+[(g'(1,2.0) = (D) B(D)

X (gi(t,z,a) - Zfi(t))dt ,

where B8/(¢) and y' are diagonal positive definite
matrices.

The technique of deriving an improving algo-
rithm in the problem of identification via a series
of experiments is based on the construction of
Krotov’s theorem on sufficient conditions for op-
timality (Krotov and Gurman, 1973). We list these
constructions, in view of the problem’s specific
properties.

Let the function ¢(f,z(s),a) be defined for

every ¢, be continuous and continuously differen-
tiable with respect to ¢ and z. Introduce the
constructions:

R(t,z,a) = ¢'(t,z,a) f(t,z,a) — f°(t,z,a)
+ ¢(t,z,a)
G'(th,t],20,21,a) = ¢'(1],2},a) — ¢'(1},2§,a)
+Fi(1,2},a)
Fi(ti,z',a) = (Ci(tz‘,z{,a) - Ci)y‘
X(C’(t{,z{,a) —@i)
foir,z,a) = (8(1,2,0) =8 (1)) B(1)

x(gi(t,z,a) —Z"(t))
The functional L is formed thus
P
L(z,a)y= Y. [G’(té,ti,zé,z{,a)

i=1
—ffiRi(t,z,a)dt]
1

Clearly, if the pair (z(t),a) satisfies the model,
then I(a) = L(z,a); further it is evident that /7,
coincides with the coefficient of the linear sum-
mand after factoring the functional L in terms of
a.

Let a point a° and a corresponding set of
trajectories {z’(t)} of solutions of Eq. 1 on seg-
ments 7¢, i =1,...,p be given. Consider the in-
crement in the functional in the neighbourhood
of the point (a% z(¢))

P T
AL=Y [AG"—[?*AR"dx]

i=1 to

The functions G’ and R’ are subjects to Taylor
series expansion in terms of the variables (z,a) up
to first-order terms. Further we have

AG' = G? Azy+ GIAz, + Gl Aa
+o(llazol Azl lAall),
AR' =R Az +R"Aa +o(llAzl,lIAall),

I -]l is the norm in corresponding euclidean spaces.
Henceforth we assume

Gi =0.
0
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Introduce the notation
¢'(1) = ¢i(t,2'(1),a%)
EN(1) =i (1,2'(1),a"%)
Hi(t,z,a,0) =" (1) f(t,z,a) — f%(t,z,a)
where ¢'(t) is a n-vector, and £'(¢) is a k-vector.

Write down the derivatives of R’ and G’
through the derivatives of H' and F'. We have

G, =¢. +F,

Gi=gi(ti,zl,) = oi(th,z6," ) + F.,
d l
Ri=H'+ ae
dr ’
, d¢
R H + W,

where the derivatives of A’ functions are calcu-
lated at the point (¢,z'(¢),a’ ¢(1)), and those of
¢' functions at the point (£,z'(¢),a"). Substitute
the resulting expressions into the formula for the
increment in the functional L and, due to the
notation introduced and Newton-Leibnitz for-
mula, we obtain

P

AL=- Y

i=1

(Fi +6'(1))) Az,

— [1(H!+ ¢")Azdt
z

+( i f"H dt)Aa}
+o(llazlLllAz,L,IlAall).

Choose the functions ¢'(1) so that the first-
order factorisation term does not depend on Az,
Az. Then the formula for calculating the gradient
L,(+), and hence I (-) will take the form

P

() - z[ (e 2().)

=1
[0 e
1y
where ¢'(¢) are the solutions of the system
(1) = —H(t,2'(1),",¢')
' (1}) = —Fi(t1,2(11),), teT, i=1,....p

Knowing the value of I, at the point a° one

can construct the following approximation using
familiar gradient-type schemes. For example, the
sequence defined by

ak+1=ak_ak1a=(ak)

prescribes a method of steepest descent, where
a* is found from the solution of a one-dimen-

sional minimisation problem
a* = argmin I(a* — al (a"))

ax0
The method of conjugate gradients is constructed

after the following scheme

ak*l =gk — oS, |
So=1,(a%),5, = In(ak) = &Sk
ak = argmin I(a, — aS,).
ax=0

The varieties of the conjugate gradients
method differ in the way the parameter ¢ is
defined. Note that if , = 0, the scheme degener-
ates into the method of steepest descent. For the
calculations undertaken, {, was assumed to be
calculated by the formula

—1(a*)(L(a") —L.(a*7h))

{ = k4

‘ 17, (a* =11
where I'(a*)(I (a*)— 1 (a*~")) is a scalar prod-
uct, ||| is the norm.

4.3. In situ experiments

Informational provision of the model is based
on widely used microcosm approach (Uhlmann,
1985). Such laboratory and field experimental
ecosystems are of great advantage for mathemati-
cal modelling (Andersen and Nival, 1987).

To determine coefficients, special experiments
were conducted near the biological station of
Scientific-Research Institute of Biology situated
at the coast of the Southern Baikal from 1985 to
1990 during different seasons (from February to
October). The main idea of experiments was to
observe the dynamics of all parameters described
by the model in almost natural conditions when
one of them was artificially changed. To solve this
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task two series of mesocosms were placed simul-
taneously in the lake. One of them served as
control, another as experimental mesocosm. Ex-
perimental mesocosms were treated in different
ways. For example, in the course of these experi-
ments substances included in the model as pollu-
tants (biogenous elements, phenolic compounds,
oil products, heavy metals, ctc.) were filled into
polyethylene bags of 2 m* in volume and placed
in the lake; they contained lake waters and natu-
ral organisms. Then the changes in concentration
of the added substances are traced during 2-3
weeks, connected with their decomposition or
absorption by biota, changes in the number and
activity of microorganisms, numbers, species com-
position and productivity of the phytoplankton,
quantity and composition of the zooplankton, hy-
drochemical indices. The same measurements
were made in control bags and in the lake outside
mesocosms. Similar experiments were obtained
with the additions of natural phytoplankton, zoo-
plankton and bacterioplankton, suspended or-
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ganic matter etc. Each series consisted of 8 con-
trol and 8 experimental mesocosms. It gave a
possibility to obtain 8 measurements in lake, 8 in
control and 8 in experiment for every parameter
studied. Data obtained were recalculated in such
way that resulting rows represented the differ-
ences between experimental ecosystems (treated
bags) and control ecosystems (untreated ones),
necessary to annihilate enclosure effects). These
rows were later processed with the use of soft-
ware developed on the basis of ideology de-
scribed in previous part of the paper). To deter-
mine magnitudes of the coefficients g;; at various
seasons of the year, an original technique was
developed for conducting experiments under ice.
So, it became possible to calculate model coeffi-
cients for different months. To extrapolate these
data on other parts of the lake we have used the
results of almost 50 years observations of the lake
Baikal ecosystem spatial dynamics obtained by
Institute of Biology, Limnological Institute and
other organisations. Data obtained were used for
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Fig. 7. Four ecosystem components absolute deviations {(mg /1) dynamics after introducing of toxicants in summer. a, phytoplankton;

b, zooplankton; ¢, nutrients (P); d, phenols (model results).
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Fig. 8. Four ecosystem components absolute deviations (mg /1) dynamics after introducing of toxicants in winter. a, phytoplankton;
b, zooplankton; ¢, nutrients (P); d, phenols (model results).
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Fig. 9. Four ecosystem components (mg /1) dynamics after introducing of toxicants in summer. a, phytoplankton; b, zooplankton; c,
nutrients(P); d, phenols (experimental data). 1, lake; 2, control mesocosms; 3, experimental mesocosms.
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the evaluation of the model coefficients and for
carrying out computation experiments.

4.4. Results of model experiments

Figs. 7 and 8 demonstrate the dynamics of
some components of the pelagic ecosystem model
during 1 month after phenols addition in summer
and in conditions below ice-cover. Figs. 9 and 10
represent data obtained during experiments.
Concentrations used were higher because other-
wise it would be impossible to measure their
changes. It is easy to see that under ice the
species complex is much more sensitive to toxi-
cants than in the summer. Amplitude of devia-
tions in summer is 7-10 times less than under ice.
Zooplankton in both cases is suppressed by phe-
nolic compounds. Summer complex returns to
natural state faster than the spring one, requiring
40-50 days to return. This can be explained by
higher relative amount of more sensitive endemic
species during ice-cover period.

This model can serve as a sensitive tool for
forecasting of changes in ecosystem components
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behaviour under external influences. As exact
prediction of ecosystem behaviour is still a very
sophisticated and practically unsolved task, such
models can be of great use in prediction of
changes caused by anthropogenic pressure. The
results demonstrated here are of illustrative char-
acter, as it is practically impossible to present the
materials, obtained in ®calculation experiments
with model, based on more than 400 series of
field experiments in the paper, devoted mainly to
overview of the lake Baikal ecosystem models.
The model of the lake Baikal ecosystem distur-
bances described above was included as a model
of a unique natural object into a widespread
multi-level system of conceptional models, con-
sisting of the top level models (interaction of
production and resources on a regional level),
models of the second level (components of the
natural environment: water, air, soil, forests, min-
erals, biological resources) and a widening com-
plex of particular models (river, steppe, forest
etc.). Use of this complex of models makes it
possible to evaluate expenditures that will secure
the desired ecological situation, the large scale
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Fig. 10. Four ecosystem components {(mg /1) dynamics after introducing of toxicants under ice. a, phytoplankton; b, zooplankton; c,
nutrients (P); d, phenols (experimental data). 1, lake; 2, control mesocosms; 3, experimental mesocosms.
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projects, substantiate the schemes of siting the
production objects, recreation territories, etc.

5. Conclusion

It is seen from the review made that modelling
of the lake Baikal ecosystem at present is quite a
wide branch of science with rich traditions, but,
although different approaches are used for model
construction, the overwhelming majority of these
models does not possess sufficient forecasting
power as they are based on the magnitudes of
coefficients that connect the ecosystem compo-
nents taken mainly from literature referring to
water bodies (Aschepkova et al., 1978a; Gorstko
et al., 1978) or obtained by expert evaluation.

A disturbances model, in contrast to others,
displays on the background of the natural dynam-
ics its disturbances: biotic interactions, action of
toxicants on hydrobionts, decomposition of the
pollutants, hydrodynamic processes. Its purpose
is to prevent the ecosystem condition during vari-
ous situations of the use of Baikal, search of
optimum rates of the economic activities that will
reflect the least on the lake ecosystem. This, the
latter, requires its amalgamation with a more
general model of a natural economy system.
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