Schools

Baikal Summer Schools

Details   >

Symposium

«Research and Education Center «Baikal» – development strategy»

About symposium >

About Baikal

Frequently asked questions, photo gallery...

Details   >

Works

3D model of Lake Baikal


Flash Video. >

Research-Educational Center Baikal

Projects Library Seminars, conferences

Library

Publication

Title: The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton

Author(s): Youngsook Huh, Mai-Yin Tsoi, Alexandr Zaitsev, and John M. Edmon

Annotation: The response of continental weathering rates to changing climate and atmospheric PCO2 is of considerable importance both to the interpretation of the geological sedimentary record and to predictions of the effects of future anthropogenic influences. While comprehensive work on the controlling mechanisms of contemporary chemical and mechanical weathering has been carried out in the tropics and, to a lesser extent, in the strongly perturbed northern temperate latitudes, very little is known about the peri-glacial environments in the subarctic and arctic. Thus, the effects of climate, essentially temperature and runoff, on the rates of atmospheric CO2 consumption by weathering are not well quantified at this climatic extreme. To remedy this lack a comprehensive survey has been carried out of the geochemistry of the large rivers of Eastern Siberia, the Lena, Yana, Indigirka, Kolyma, Anadyr, and numerous lesser streams which drain a pristine, high-latitude region that has not experienced the pervasive effects of glaciation and subsequent anthropogenic impacts common to western Eurasia and North America.

The scale of the terrain sampled, in terms of area, is comparable to that of the continental United States or the Amazon/Orinoco and includes a similarly diverse range of geologic and climatic environments. In this paper the chemical fluxes from the western region, the very large, ancient, and geologically stable sedimentary basin, Precambrian to Quaternary, of the Siberian Platform will be presented and compared to published results from analogous terrains in the tropical basins of China. While the range in the chemical signatures of the various tributaries included here (~60 sampled) is large, this mainly reflects lithology rather than the weathering environment. The areal chemical fluxes are comparable to those of the Chinese rivers, being dominated by the dissolution of carbonates and evaporites. The net consumption of atmospheric CO2 by aluminosilicate weathering is minor, as it is in the tropical basins. It is much smaller than in active orogenic belts in similar latitudes, e.g., the Fraser and Yukon, but comparable to those of the Mackenzie tributaries that drain the eastern slope of the Rockies. Lithology exerts the dominant influence in determining the weathering yield from sedimentary terrains, and for a largely carbonate/evaporite terrain climate does not have a direct effect.

Bibliographical description: Geochimica et Cosmochimica Acta, Vol. 62, No. 10, pp. 1657–1676, 1998

Publication's type: статья

Upload 00001742.pdf (0.83 Mb)

If you find an error in this web page, please select the erroneous text and press Ctrl+Enter.